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Gradient boosting of the C-index

The concept of boosting was first introduced in the field of machine learning [1, 2]. The basic idea is
to boost the accuracy of a relatively weak performing classificator (termed “base-learner”) to a more
accurate prediction via iteratively applying the base-learner and aggregating its solutions. Generally, the
concept of boosting leads to a drastically improved prediction accuracy compared to a single solution of
the base-learner [3]. This basic concept was later adapted to fit statistical regression models in a forward
stagewise fashion [4, 5]. One of the main advantages of this approach is the interpretability of the final
solution, which is basically the same as in any other statistical model [6]. This can not be achieved
with competing machine learning algorithms as Support Vector Machines [7] or Random Forests [8].
Specifically, the boosting approach can be used to develop prediction rules for survival outcomes [9–11].
Although there exist also likelihood-based approaches for boosting [12], we will her focus on gradient-
based boosting [6] as it is the better fitting approach for boosting the distribution-free C-index.

The most flexible implementation of gradient boosting is the mboost [13] add-on package for the Open
Source programming environment R [14]. The mboost package contains a large variety of different pre-
implemented base-learners and loss functions that can be combined by the user via different fitting
functions. For a tutorial on the how to apply the package for practical data analysis, see [15].

To apply gradient boosting to optimize linear biomarker combinations w.r.t. the C-index in the version
of Uno et al. [16], it is necessary to specify the newly developed Cindex() family inside the glmboost()

function.

The Cindex family object includes the sigmoid function K(u) = 1/(1 + exp(−u/σ)) as approximation of
the indicator functions in the estimated C-index. The sigmoid function is evaluated inside the R functions
approxGrad() and approxLoss(), which are part of the Cindex object. The weights
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(implemented in the risk() function) as well as for the negative gradient
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(implemented in the ngradient() function).
Those different functions that define the optimization problem are finally plugged into the mboost specific
Family() function to build a new boost family. Details on how to implement user-specific families in
mboost are presented in the Appendix of [15]. The complete Cindex object is then given as follows:

Cindex <- function (sigma = 0.1) {

approxGrad <- function(x) { ## sigmoid function for gradient

exp(x/sigma) / (sigma * (1 + exp(x/sigma))^2)

}

approxLoss <- function(x) { ## sigmoid function for loss

1 / (1 + exp(x / sigma))

}

compute_weights <- function(y, w = 1){ ## compute weights

ipcw_wow <- IPCweights(y[w != 0,])

ipcw <- numeric(nrow(y))

ipcw[w!=0] <- ipcw_wow

survtime <- y[,1]

n <- nrow(y)

wweights <- matrix( (ipcw)^2, nrow = n, ncol = n)

weightsj <- matrix(survtime, nrow = n, ncol = n)

weightsk <- matrix(survtime, nrow = n, ncol = n, byrow = TRUE)

weightsI <- (weightsj < weightsk) + 0

wweights <- wweights * weightsI

Wmat <- w %o% w

wweights <- wweights * Wmat

wweights <- wweights / sum(wweights)

rm(weightsI); rm(weightsk); rm(weightsj)

return(wweights)

}

ngradient = function(y, f, w = 1) { ## negative gradient

if (!all(w %in% c(0,1)))

stop(sQuote("weights"), " must be either 0 or 1 for family ",

sQuote("UnoC"))

survtime <- y[,1]

event <- y[,2]

if (length(w) == 1) w <- rep(1, length(event))

if (length(f) == 1) {

f <- rep(f, length(survtime))

}

n <- length(survtime)

etaj <- matrix(f, nrow = n, ncol = n, byrow = TRUE)

etak <- matrix(f, nrow = n, ncol = n)

etaMat <- etak - etaj

rm(etaj); rm(etak);

weights_out <- compute_weights(y, w)

M1 <- approxGrad(etaMat) * weights_out

ng <- colSums(M1) - rowSums(M1)
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return(ng)

}

risk = function(y, f, w = 1) { ## empirical risk

survtime <- y[,1]

event <- y[,2]

if (length(f) == 1) {

f <- rep(f, length(y))

}

n <- length(survtime)

etaj <- matrix(f, nrow = n, ncol = n, byrow = TRUE)

etak <- matrix(f, nrow = n, ncol = n)

etaMat <- (etak - etaj)

rm(etaj); rm(etak);

weights_out <- compute_weights(y, w)

M1 <- approxLoss(etaMat) * weights_out

return(- sum(M1))

}

Family( ## build the family object

ngradient = ngradient,

risk = risk,

weights = "zeroone",

offset = function(y, w = 1) {0},

check_y = function(y) {

if (!inherits(y, "Surv"))

stop("response is not an object of class ", sQuote("Surv"),

" but ", sQuote("family = UnoC()"))

y},

rclass = function(f){},

name = paste("Concordance Probability by Uno")

)

}

Application

We will briefly demonstrate how to apply the Cindex family in practice to derive the optimal combination
of pre-selected biomarkers. We will use the van de Vijver et al. [17] data set of 144 lymph node positive
breast cancer patients that was also considered in the main article. The data set is publicly available as
part of the R add-on package penalized [18]. The 70-gene signature for metastasis-free survival after
surgery was originally developed by van’t Veer et al. [19].

We first split the data set in 100 training observations and 44 test observations. To ensure better read-
ability of the code, we do not carry out stratified subsampling but just use the first 100 patients as
training sample. Model fitting is carried out by the glmboost() function of the mboost package. As
linear models are the default base-learners for glmboost(), no additional base-learner has to be specified.
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As appropriate family object we specify the Cindex family described above.

For evaluating the discriminatory power of the resulting prediction on test data, we use the UnoC()

function of the survAUC package [20]. It implements the unbiased estimator ĈUno, as proposed by Uno
et al. [16].

## load add-on packages

library(penalized) ## for the data set

library(mboost) ## for boosting

library(survAUC) ## for evaluation

data(nki70) ## loading the data

source("Cindex.R") ## loading the family defined above

## split the data set in training and test sample (simplified):

dtrain <- nki70[1:100,]

dtest <- nki70[101:144,]

## fit a model via the glmboost() function

## formula : defines the candidate model; the response is the survival

## object Surv(time, event); via ’~ ." all remaining variables

## in the data set serve as possible predictors

## family : defines the optimization problem (in this case the C-index)

## sigma is the smoothing parameter of the sigmoid function that

## approximates the indicator functions. The default value is 0.1.

## control : defines other boosting-specific tuning parameters like the

## stopping iteration mstop or the step-length nu; trace = TRUE is

## only for convenience (shows the trace of the empirical risk).

## data : defines the data set -> training sample

mod1 <- glmboost(Surv(time, event) ~ ., family = Cindex(sigma = 0.1),

control = boost_control(mstop = 500, trace = TRUE, nu = 0.1),

data = dtrain)

## The stopping iteration can be changes via simple indexing:

mod1 <- mod1[50000] ## Long runtime: 50000 iterations

## takes at least a couple of minutes on a standard machine

## Now take a look at the resulting combination

coef(mod1)

## Prediction on test data

preds <- predict(mod1, newdata = dtest)

## Evaluate the discriminatory power

UnoC(Surv(dtrain$time, dtrain$event), Surv(dtest$time, dtest$event), lpnew = -preds)
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13. Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B (2013) mboost: Model-Based Boosting.
URL http://CRAN.R-project.org/package=mboost. R package version 2.2-3.

14. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. ISBN 3-900051-07-0.

15. Hofner B, Mayr A, Robinzonov N, Schmid M (2012) Model-based boosting in R: a hands-on tutorial
using the R package mboost. Computational Statistics : 1–33.

16. Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ (2011) On the C-statistics for evaluating
overall adequacy of risk prediction procedures with censored survival data. Statistics in Medicine
30: 1105–1117.

17. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, et al. (2002) A gene-expression
signature as a predictor of survival in breast cancer. New England Journal of Medicine 347: 1999–
2009.

18. Goeman J (2012) penalized: L1 (Lasso) and L2 (Ridge) Penalized Estimation in GLMs and in the
Cox Model. R package version 0.9-42.



6

19. van’t Veer LJ, Dai HY, van de Vijver MJ, He YDD, Hart AAM, et al. (2002) Gene expression
profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

20. Potapov S, Adler W, Schmid M (2012) survAUC: Estimators of Prediction
Accuracy for Time-to-Event Data. R package version 1.0-5. http://cran.r-
project.org/web/packages/survAUC/index.html.


